
15.2 | Energy in Simple Harmonic Motion

Learning Objectives

By the end of this section, you will be able to:

• Describe the energy conservation of the system of a mass and a spring

• Explain the concepts of stable and unstable equilibrium points

To produce a deformation in an object, we must do work. That is, whether you pluck a guitar string or compress a car’s
shock absorber, a force must be exerted through a distance. If the only result is deformation, and no work goes into thermal,
sound, or kinetic energy, then all the work is initially stored in the deformed object as some form of potential energy.

Consider the example of a block attached to a spring on a frictionless table, oscillating in SHM. The force of the spring is a
conservative force (which you studied in the chapter on potential energy and conservation of energy), and we can define a
potential energy for it. This potential energy is the energy stored in the spring when the spring is extended or compressed.
In this case, the block oscillates in one dimension with the force of the spring acting parallel to the motion:
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When considering the energy stored in a spring, the equilibrium position, marked as xi = 0.00 m, is the position at which

the energy stored in the spring is equal to zero. When the spring is stretched or compressed a distance x, the potential energy
stored in the spring is

U = 1
2kx2.

Energy and the Simple Harmonic Oscillator
To study the energy of a simple harmonic oscillator, we need to consider all the forms of energy. Consider the example
of a block attached to a spring, placed on a frictionless surface, oscillating in SHM. The potential energy stored in the
deformation of the spring is

U = 1
2kx2.

In a simple harmonic oscillator, the energy oscillates between kinetic energy of the mass K = 1
2mv2 and potential energy

U = 1
2kx2 stored in the spring. In the SHM of the mass and spring system, there are no dissipative forces, so the total

energy is the sum of the potential energy and kinetic energy. In this section, we consider the conservation of energy of the
system. The concepts examined are valid for all simple harmonic oscillators, including those where the gravitational force
plays a role.

Consider Figure 15.11, which shows an oscillating block attached to a spring. In the case of undamped SHM, the energy
oscillates back and forth between kinetic and potential, going completely from one form of energy to the other as the system
oscillates. So for the simple example of an object on a frictionless surface attached to a spring, the motion starts with all
of the energy stored in the spring as elastic potential energy. As the object starts to move, the elastic potential energy is
converted into kinetic energy, becoming entirely kinetic energy at the equilibrium position. The energy is then converted
back into elastic potential energy by the spring as it is stretched or compressed. The velocity becomes zero when the kinetic
energy is completely converted, and this cycle then repeats. Understanding the conservation of energy in these cycles will
provide extra insight here and in later applications of SHM, such as alternating circuits.
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Figure 15.11 The transformation of energy in SHM for an object attached to a spring on a
frictionless surface. (a) When the mass is at the position x = + A , all the energy is stored as

potential energy in the spring U = 1
2kA2 . The kinetic energy is equal to zero because the

velocity of the mass is zero. (b) As the mass moves toward x = −A , the mass crosses the

position x = 0 . At this point, the spring is neither extended nor compressed, so the potential

energy stored in the spring is zero. At x = 0 , the total energy is all kinetic energy where

K = 1
2m(−vmax)2 . (c) The mass continues to move until it reaches x = −A where the mass

stops and starts moving toward x = + A . At the position x = −A , the total energy is stored as

potential energy in the compressed U = 1
2k(−A)2 and the kinetic energy is zero. (d) As the

mass passes through the position x = 0 , the kinetic energy is K = 1
2mvmax

2 and the potential

energy stored in the spring is zero. (e) The mass returns to the position x = + A , where K = 0

and U = 1
2kA2 .

Consider Figure 15.11, which shows the energy at specific points on the periodic motion. While staying constant, the
energy oscillates between the kinetic energy of the block and the potential energy stored in the spring:

ETotal = U + K = 1
2kx2 + 1

2mv2.

The motion of the block on a spring in SHM is defined by the position x(t) = Acos⎛
⎝ωt + ϕ⎞

⎠ with a velocity of

v(t) = −Aωsin⎛
⎝ωt + ϕ⎞

⎠ . Using these equations, the trigonometric identity cos2 θ + sin2 θ = 1 and ω = k
m , we can find

the total energy of the system:
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The total energy of the system of a block and a spring is equal to the sum of the potential energy stored in the spring plus

the kinetic energy of the block and is proportional to the square of the amplitude ETotal = (1/2)kA2. The total energy of

the system is constant.

A closer look at the energy of the system shows that the kinetic energy oscillates like a sine-squared function, while
the potential energy oscillates like a cosine-squared function. However, the total energy for the system is constant and
is proportional to the amplitude squared. Figure 15.12 shows a plot of the potential, kinetic, and total energies of the
block and spring system as a function of time. Also plotted are the position and velocity as a function of time. Before time
t = 0.0 s, the block is attached to the spring and placed at the equilibrium position. Work is done on the block by applying

an external force, pulling it out to a position of x = + A . The system now has potential energy stored in the spring. At

time t = 0.00 s, the position of the block is equal to the amplitude, the potential energy stored in the spring is equal to

U = 1
2kA2 , and the force on the block is maximum and points in the negative x-direction ⎛

⎝FS = −kA⎞
⎠ . The velocity and

kinetic energy of the block are zero at time t = 0.00 s. At time t = 0.00 s, the block is released from rest.

Figure 15.12 Graph of the kinetic energy, potential energy, and total energy of a block oscillating on a spring in SHM.
Also shown are the graphs of position versus time and velocity versus time. The total energy remains constant, but the
energy oscillates between kinetic energy and potential energy. When the kinetic energy is maximum, the potential energy is
zero. This occurs when the velocity is maximum and the mass is at the equilibrium position. The potential energy is
maximum when the speed is zero. The total energy is the sum of the kinetic energy plus the potential energy and it is
constant.

Oscillations About an Equilibrium Position
We have just considered the energy of SHM as a function of time. Another interesting view of the simple harmonic oscillator
is to consider the energy as a function of position. Figure 15.13 shows a graph of the energy versus position of a system
undergoing SHM.
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Figure 15.13 A graph of the kinetic energy (red), potential energy
(blue), and total energy (green) of a simple harmonic oscillator. The force

is equal to F = − dU
dx . The equilibrium position is shown as a black dot

and is the point where the force is equal to zero. The force is positive when
x < 0 , negative when x > 0 , and equal to zero when x = 0 .

The potential energy curve in Figure 15.13 resembles a bowl. When a marble is placed in a bowl, it settles to the
equilibrium position at the lowest point of the bowl (x = 0) . This happens because a restoring force points toward the

equilibrium point. This equilibrium point is sometimes referred to as a fixed point. When the marble is disturbed to a
different position (x = + A) , the marble oscillates around the equilibrium position. Looking back at the graph of potential

energy, the force can be found by looking at the slope of the potential energy graph ⎛
⎝F = − dU

dx
⎞
⎠ . Since the force on either

side of the fixed point points back toward the equilibrium point, the equilibrium point is called a stable equilibrium point.
The points x = A and x = −A are called the turning points. (See Potential Energy and Conservation of Energy.)

Stability is an important concept. If an equilibrium point is stable, a slight disturbance of an object that is initially at the
stable equilibrium point will cause the object to oscillate around that point. The stable equilibrium point occurs because the
force on either side is directed toward it. For an unstable equilibrium point, if the object is disturbed slightly, it does not
return to the equilibrium point.

Consider the marble in the bowl example. If the bowl is right-side up, the marble, if disturbed slightly, will oscillate around
the stable equilibrium point. If the bowl is turned upside down, the marble can be balanced on the top, at the equilibrium
point where the net force is zero. However, if the marble is disturbed slightly, it will not return to the equilibrium point, but
will instead roll off the bowl. The reason is that the force on either side of the equilibrium point is directed away from that
point. This point is an unstable equilibrium point.

Figure 15.14 shows three conditions. The first is a stable equilibrium point (a), the second is an unstable equilibrium point
(b), and the last is also an unstable equilibrium point (c), because the force on only one side points toward the equilibrium
point.
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Figure 15.14 Examples of equilibrium points. (a) Stable equilibrium point; (b) unstable equilibrium point;
(c) unstable equilibrium point (sometimes referred to as a half-stable equilibrium point).

The process of determining whether an equilibrium point is stable or unstable can be formalized. Consider the potential
energy curves shown in Figure 15.15. The force can be found by analyzing the slope of the graph. The force is

F = − dU
dx . In (a), the fixed point is at x = 0.00 m. When x < 0.00 m, the force is positive. When x > 0.00 m, the

force is negative. This is a stable point. In (b), the fixed point is at x = 0.00 m. When x < 0.00 m, the force is negative.

When x > 0.00 m, the force is also negative. This is an unstable point.

Figure 15.15 Two examples of a potential energy function. The force at a position is equal to the negative of the
slope of the graph at that position. (a) A potential energy function with a stable equilibrium point. (b) A potential
energy function with an unstable equilibrium point. This point is sometimes called half-stable because the force on
one side points toward the fixed point.

A practical application of the concept of stable equilibrium points is the force between two neutral atoms in a molecule. If
two molecules are in close proximity, separated by a few atomic diameters, they can experience an attractive force. If the
molecules move close enough so that the electron shells of the other electrons overlap, the force between the molecules
becomes repulsive. The attractive force between the two atoms may cause the atoms to form a molecule. The force between
the two molecules is not a linear force and cannot be modeled simply as two masses separated by a spring, but the atoms of
the molecule can oscillate around an equilibrium point when displaced a small amount from the equilibrium position. The
atoms oscillate due the attractive force and repulsive force between the two atoms.

Consider one example of the interaction between two atoms known as the van Der Waals interaction. It is beyond the scope
of this chapter to discuss in depth the interactions of the two atoms, but the oscillations of the atoms can be examined by
considering one example of a model of the potential energy of the system. One suggestion to model the potential energy of
this molecule is with the Lennard-Jones 6-12 potential:
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A graph of this function is shown in Figure 15.16. The two parameters ε and σ are found experimentally.

Figure 15.16 The Lennard-Jones potential energy function for a system of two
neutral atoms. If the energy is below some maximum energy, the system oscillates
near the equilibrium position between the two turning points.

From the graph, you can see that there is a potential energy well, which has some similarities to the potential energy well
of the potential energy function of the simple harmonic oscillator discussed in Figure 15.13. The Lennard-Jones potential
has a stable equilibrium point where the potential energy is minimum and the force on either side of the equilibrium point
points toward equilibrium point. Note that unlike the simple harmonic oscillator, the potential well of the Lennard-Jones
potential is not symmetric. This is due to the fact that the force between the atoms is not a Hooke’s law force and is not
linear. The atoms can still oscillate around the equilibrium position xmin because when x < xmin , the force is positive;

when x > xmin , the force is negative. Notice that as x approaches zero, the slope is quite steep and negative, which means

that the force is large and positive. This suggests that it takes a large force to try to push the atoms close together. As x
becomes increasingly large, the slope becomes less steep and the force is smaller and negative. This suggests that if given a
large enough energy, the atoms can be separated.

If you are interested in this interaction, find the force between the molecules by taking the derivative of the potential energy
function. You will see immediately that the force does not resemble a Hooke’s law force (F = −kx) , but if you are familiar

with the binomial theorem:

(1 + x)n = 1 + nx + n(n − 1)
2! x2 + n(n − 1)(n − 2)

3! x3 + ⋯ ,

the force can be approximated by a Hooke’s law force.

Velocity and Energy Conservation
Getting back to the system of a block and a spring in Figure 15.11, once the block is released from rest, it begins
to move in the negative direction toward the equilibrium position. The potential energy decreases and the magnitude of
the velocity and the kinetic energy increase. At time t = T /4 , the block reaches the equilibrium position x = 0.00 m,
where the force on the block and the potential energy are zero. At the equilibrium position, the block reaches a negative
velocity with a magnitude equal to the maximum velocity v = −Aω . The kinetic energy is maximum and equal to

K = 1
2mv2 = 1

2mA2 ω2 = 1
2kA2. At this point, the force on the block is zero, but momentum carries the block, and it

continues in the negative direction toward x = −A . As the block continues to move, the force on it acts in the positive

direction and the magnitude of the velocity and kinetic energy decrease. The potential energy increases as the spring
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15.1

15.2

compresses. At time t = T /2 , the block reaches x = −A . Here the velocity and kinetic energy are equal to zero. The force

on the block is F = + kA and the potential energy stored in the spring is U = 1
2kA2 . During the oscillations, the total

energy is constant and equal to the sum of the potential energy and the kinetic energy of the system,

(15.12)ETotal = 1
2kx2 + 1

2mv2 = 1
2kA2.

The equation for the energy associated with SHM can be solved to find the magnitude of the velocity at any position:

(15.13)|v| = k
m

⎛
⎝A2 − x2⎞

⎠.

The energy in a simple harmonic oscillator is proportional to the square of the amplitude. When considering many forms of
oscillations, you will find the energy proportional to the amplitude squared.

Check Your Understanding Why would it hurt more if you snapped your hand with a ruler than with a
loose spring, even if the displacement of each system is equal?

Check Your Understanding Identify one way you could decrease the maximum velocity of a simple
harmonic oscillator.

15.3 | Comparing Simple Harmonic Motion and Circular

Motion

Learning Objectives

By the end of this section, you will be able to:

• Describe how the sine and cosine functions relate to the concepts of circular motion

• Describe the connection between simple harmonic motion and circular motion

An easy way to model SHM is by considering uniform circular motion. Figure 15.17 shows one way of using this method.
A peg (a cylinder of wood) is attached to a vertical disk, rotating with a constant angular frequency. Figure 15.18 shows
a side view of the disk and peg. If a lamp is placed above the disk and peg, the peg produces a shadow. Let the disk have a
radius of r = A and define the position of the shadow that coincides with the center line of the disk to be x = 0.00 m . As

the disk rotates at a constant rate, the shadow oscillates between x = + A and x = −A . Now imagine a block on a spring

beneath the floor as shown in Figure 15.18.
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